Math 2002 Final: Solutions

1. (a) Fubini’s theorem states that if f is continuous on a rectangle R =
[a,b] x [c,d], then

[raa= [ [ swyydyiz= [" [ fe.y)drdy

(b) The fundamental theorem of line integrals says that if f is a con-
tinuous function, then

Lvi -dr = £®) = f(r(a)

where C' has parametrization r(t), a <t < b.

(c) Stokes’ theorem says that if C' is the boundary curve of a smooth
surface S, and F is a vector field whose components have contin-
uous partial derivatives, then
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(b) C has parametrization r(t) = (=1 —2¢,2+3t), 0 < ¢ < 1. Thus
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3. The complementary equation y” + 6y’ + 9y = 0 has auxiliary equation
2462 +9 = 0, which factors as (r+3)? = 0. Thus the complementary
equation has solution

Yo = C1€757 + coxe

To find a particular solution, we use the method of undetermined co-
efficients, with y, = Az + B. This has derivative y, = A. Putting this
into the given DE gives

6A+9Ax +9B =3z +1

Thus 94 = 3 and 6A + 9B = 1. Solving for A and B gives A =
B = —é. Thus the DE has general solution
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Using y(0) = 0 gives ¢; = 5. To use ¢/(0), we need to find the derivative
of y. This is

Y = —3c1e7 4 coe 3 — 3epxe 3 4 =
Thus y/'(0) = 1 gives
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Since ¢; = %, this gives ¢o = 1. Thus the solution is
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4. (a) One can calculate
curl(F) = (2zcosy — 2zcosy)i — (0 — 0)j + (—siny + siny)k = 0

so F' is conservative.

(b) We know
gi = Cosy,g]yf = z2cosy—xsiny,gz =2zsiny +3

Integrating the first expression with respect to x gives f = x cos y+
9(y, z). Differentianting with respect to y gives
dg
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Comparing with above gives g—z = 2%cosy, so g = Z?siny + h(z).

Now differentiating f with respect to z gives

of : :
3, = 2zsiny + h'(2)

So h/(z) = 3, and thus h(z) = 3z. So
f=xcosy+ 2*siny + 3z

(c) Since F is conservative, by the fundamental theorem of line inte-
grals,

LF-dr =) = fr(@) = £(1,7,2) = £(0,0,1) =2

5. Since the curve is closed, we can use Green’s theorem. The region D
that the curve bounds is the first eighth of the circle 2% 4 y? = 1, and
C is oriented negatively. Thus
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6. We can rewrite the equations for v and v as
r=v+4u,y =2u

This has Jacobian —2. The region D is bounded by the curves
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Under the change of variables, this changes to

u=0,v=04u+v=4

This D region is a triangle. Thus the integral becomes
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7. Notice that the surface is the boundary of the following solid E: x% +
y? < xz < 4 (the first surface is the curved outside of F, and the second
surface is the flat top of E). Thus, by the divergence theorem,
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8. The complementary equation has auxiliary equation 22 — 1 = 0, so has
roots x = +1. Thus the complementary equation has solution

Yo = 16° + €™ "

Using the method of undetermined coefficients, we try a solution of the
form y, = e”(acosz + bsinx). This has derivative

y, = €*(acos x+bsinx)+e”(—asinz+bcosx) = e”((a+b) cos x+(b—a) sin x)
and second derivative
y, = e"((a+b) cos z+(b—a) sin v)+e"((—a—D) sin +(b—a) cos x) = e*(2bcos x—2a sin x)
Putting this into the given DE gives
e*((2b — a) cos +(—2a — b) sinx) = €* cosx
Comparing coefficients, we get
2b—a=1land —2a—-b=0

Solving this for a and b gives a = %1, b= % Thus the general solution
is
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9. Since we are calculating the surface integral of the curl of a vector field,
we can use Stokes’ theorem. The boundary curve C' of the surface S
has parametrization r(0) = (2cos6,2,2sin6),0 < 6 < 27. The surface
is oriented inwards, so
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10. (Bonus) Given a continuous function f, define a vector field F by

F(z.9.2) = [ f(t,y.2)i+0j+0k

Then g
aiv(F) = = [ f(ty,2) +0+0= fla.y,2)

by the fundamental theorem of calculus. So div(F) = f, as required.



